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1 Lithium-decorated oxidized porous graphene for hydrogen storage
2 by first principles study
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7 The first-principles calculations are performed to investigate the geometric stability and the hydrogen
8 storage capacity of lithium-decorated oxidized porous graphene (PG). Due to strong interaction
9 between Li and O atom, two stable Li decorated structures have relatively high Li binding energies

10 of 3.84 and 3.04 eV, which could eliminate the clustering problem for Li atoms on PG surface. One
11 doped Li atom could hold five H2 molecules and the binding energy of each H2 is above 0.2 eV. The
12 interaction of H2 molecules with Li atom results from charge exchange between H2’s r orbital and
13 Li’s 2s orbital. In the final structure with two Li-O groups in one carbon pore, a hydrogen storage
14 capacity of 9.43 wt. % could be achieved. By the combination of the advantage of Li decoration and
15 oxidized porous graphene, Li-OPG possesses remarkable geometric stability and high hydrogen
16 storage capacity. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770482]

17 I. INTRODUCTION

18 Hydrogen energy is believed to be a promising energy
19 source because it is abundant and environmental friendly. In
20 searching for an ideal H2 storage medium with high gravi-
21 metric and volumetric density operating at ambient condi-
22 tions, a plenty of metal-decorated nanostructures have been
23 proposed to serve as hydrogen sorbents.1–4

24 In these materials, metal atoms distributed on the sur-
25 face of nanostructures are assumed to be the H2 adsorbing
26 centers. To adsorb and desorb H2 molecule under moderate
27 temperature and pressure, the suitable H2 binding energy
28 should be in the range of 0.2–0.6 eV/H2.5 The transition met-
29 als, such as Ti6–8 and Fe,9 were first tried to serve as doping
30 metal on the nanostructure. It is proved that they have a
31 Kubas interaction with H2 molecules.10 However, this inter-
32 action seems to be excessively strong, since the H2 binding
33 energy is above 0.6 eV and the H-H bond breaks up. Aside
34 from transition metals, alkaline metals11–14 and alkaline
35 earth metals15–19 tend to adsorb H2 molecules through a
36 moderate interaction with H2 binding energy around 0.2 eV,
37 in which H2 remains in molecule form. According to the pre-
38 vious calculations,20–22 a calcium atom could hold up to four
39 H2 molecules around, and the moderate interaction with av-
40 erage H2 binding energy around 0.2 eV (GGA value) permits
41 H2 recycling at ambient conditions. Except the similar bind-
42 ing mechanism of H2 molecule, lithium has a more advant-
43 age of the smallest atomic mass to achieve higher
44 gravimetric hydrogen storage density. Furthermore, the co-
45 hesive energy of Li is substantially smaller than those of
46 transition metals.23 Thus, Li atoms are not likely to form
47 clusters because of the repulsion between Li atoms induced
48 by remaining positive charge of each lithium atom.
49 On the other hand, an appropriate nanostructure should
50 be chosen to fixate the decorating metal steadily with high

51density. So far, a lot of nanostructures, including nanotube,24–30

52graphene,31–36 fullerence,37–40 metal organic framework,41–46

53small organic molecules,47,48 etc., have been studied. The
54metal binding energy is an important criterion to measure
55nanostructure’s ability to fix metal atom. Sun et al.37 pro-
56posed a Li12C60 structure bonding Li atom to every pentago-
57nal face of C60 fullerene. In a lithium doped graphene
58structure proposed by Ataca et al.,31 metal binding energy is
591.93 eV and 0.86 eV with a minimum Li-Li distance of
609.77 Å and 4.92 Å, respectively. Li12Si60H60 composite has
61been proposed to study the hydrogen adsorption ability.49

62Recently, porous graphene (PG), a regular 2D polyphe-
63nylene networks with single atom wide pores and sub
64nanometre periodicity, have successfully fabricated of by
65surface-assisted coupling of specifically designed molecular
66building blocks.50 PG could be also considered as a defect
67graphene sheet with repeat missed carbon ring that is termi-
68nated by hydrogen bonds. As well as the experimental inves-
69tigations,51 there were several theoretical works which
70studied the electronic properties,52 gas separation,53 and
71hydrogen storage54 of PG. Du et al.55 have studied the
72hydrogen storage capacity of Li doped porous graphene.
73In this work, we designed a novel hydrogen storage
74material named lithium-decorated oxidized porous graphene
75(Li-OPG), based on the experimentally prepared porous gra-
76phene. In Li-OPG structure, lithium atom is expected to have
77a stronger interaction with oxygen than with carbon atom.
78Furthermore, it is able to achieve higher hydrogen storage
79density, because of the lower density of porous graphene
80than that of normal graphene, and the carbon pore in the po-
81rous graphene providing more space for lithium atoms and
82H2 molecules. To validate the feasibility of Li-OPG, the fol-
83lowing three issues must be addressed. First, is the Li-OPG
84structure stable enough for practical synthesis? Second, how
85many H2 could one Li atom adsorbed and what is the binding
86mechanism? Third, is the hydrogen storage capacity satisfy-
87ing? We studied these questions by first principle
88calculations.
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89 II. COMPUTATIONAL METHODS

90 All calculations were carried out by SIESTA code56 with
91 the framework of density function theory (DFT).57,58 Gener-
92 alized gradient approximation described by Perdew-Burke-
93 Ernzerhof (PBE)59 was chosen as the exchange correlation
94 potential, and the Troullier-Martins scheme norm-conserving
95 pseudopotentials60 was employed to represent the interaction
96 between localized pseudoatomic orbitals and ionic cores. The
97 double-f basis set was adopted to ensure a good computa-
98 tional convergence. The energy cutoff was 150 Ry. The
99 Brillouin zone sampling was performed using a Monkhorst-

100 Pack special k points gird.61 All structures were fully relaxed
101 with the force on each atom less than 0.05 eV/Å. The lattice
102 constants a and c of hexangular 3� 3� 1 supercell are
103 7.38 Å and 22.14 Å, respectively. The c parameter of the
104 supercell was designed to be large enough to render the inter-
105 action between the layer and its periodic image negligible.

106 III. RESULTS AND DISCUSSION

107 A. Li-OPG structure

108 First of all, we constructed OPG structure based on the
109 experimentally prepared porous graphene, by replacing a
110 hydrogen atom with an oxygen atom, as shown in Fig. 1(a).
111 Like the relationship of graphene and graphene oxide, here
112 oxidized porous graphene is constructed by introducing the
113 oxidation group on porous graphene, which is expected to re-
114 alize experimentally in an oxidation process. Furthermore,
115 calculations are performed to discuss the different oxidation
116 sites on PG structure (sites A, B, and C in Fig. 1AQ1 ). The com-
117 parison of total energy (�2368.99, �2365.78, �2363.94 eV,
118 respectively) of these three configurations shows that the site
119 A is most favorable for oxygen atom adsorption, and this
120 OPG structure has been chosen for following Li atoms and
121 H2 molecules adsorption. Then Li-OPG structure was formed
122 by adsorbing a Li atom on the OPG surface near oxygen
123 atom, and two stable Li adsorption sites noted as Flat-Li and
124 Erect-Li are shown in Figs. 1(b) and 1(c).
125 In the relaxed OPG structure, the carbon plane tends to
126 curve a little after oxidizing rather than staying smooth as
127 porous graphene does. In Fig. 1(a), the distance d1 (1.46 Å)
128 between oxygen and carbon atoms is very close to that in
129 other C¼O molecules (about 1.43 Å), which means a strong
130 covalent C¼O bond has formed here. The calculated C�C
131 bond lengths d2 (1.40 Å) and d3 (1.38 Å) are also close to the
132 origin C�C bond (1.42 Å) in graphene, and almost equal to

133that in original porous graphene terminated by hydrogen
134bonds, indicating that this oxygen atom replacing hardly
135affect the adjacent carbon structure. For the Li-OPG model,
136there are two stable Li adsorbing structures, in which the dis-
137tance between Li atom and O atom are both 1.70 Å. This
138bond is relatively shorter than other Li doped structure,
139indicating a stronger interaction between Li and O. For con-
140venience, we denoted these two structures as Flat-Li and
141Erect-Li afterwards, as the Li-O bonds are parallel and per-
142pendicular to the carbon plane, respectively.
143To characterize the stability of Li adsorbing on
144OPG, the binding energy of Li atom was calculated as EMb

145¼ELi-OPG�EOPG�ELi. Here, ELi-OPG and EOPG are the
146energies of relaxed Li-OPG and OPG structures, respec-
147tively. ELi is the energy of a free Li atom. As a result, EMb of
148Flat-Li and Erect-Li turn out to be 3.84 eV and 3.04 eV. To
149figure out the cause of the EMb difference, we calculated the
150charge transfer of Li-OPG structure. The Mulliken charge
151analysis indicates that Li becomes positively charged by
152donating 0.319 and 0.433 electrons to O and H bonded to C
153possess charge of around �0.2 jej. It is reasonable that the
154neighboring negatively charged H atoms attract the posi-
155tively charged Li atom. Therefore, Flat-Li has a higher EMb.
156It should be noted that the calculated EMb are much higher
157than the Li bulk cohesive energy (1.62 eV), and the Li atoms
158keep away from each other with a nearest distance of 7.38 Å,
159which means doped Li atoms are unlikely to cluster on OPG
160structure. In addition, we calculated the EMb in Li doped
161porous graphene to be 1.08 eV (Du et al. calculated this
162value to be 1.81 eV based on AQ2LDA55). Compared to the EMb

163of Li doped graphene and Li12C60, which was demonstrated
164to be 1.93 (LDA)31 and 1.78 eV (GGA),37 the EMb of Li-
165OPG is significantly higher (Table I). AQ3

166B. Hydrogen binding energy of Li-OPG

167First, we investigated the adsorption of one H2 molecule
168to the Li atom of Li-OPG structure. Similarly, hydrogen
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FIG. 1. (a) OPG structure; (b) and (c)

top view and side view of two Li-OPG

structures.

TABLE I. The distance between Li and O dLi-O, the Li binding energy EMb,

the charge of Li QLi and the charge of O QO of two Li-OPG structures.

dLi-O/Å EMb/eV QLi/|e| QO/|e|

Flat-Li 1.70 3.84 þ0.319 �0.125

Erect-Li 1.70 3.04 þ0.433 �0.170
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169 binding energy is calculated as EHb¼ (EH-Li-OPG�ELi-OPG

170 �EH). Here EH-Li-OPG and ELi-OPG are the energies of
171 relaxed H-Li-OPG and Li-OPG structures, respectively. EH

172 is the energy of a H2 molecule. These two relaxed structures
173 are shown as insets in Figs. 2(a) and 2(b). And EHb along
174 with length of H-H bond and distance from metal atom to H2

175 molecule are shown in Table II. As we could see, EHb of
176 Erect-Li structure is much higher than that of Flat-Li struc-
177 ture. Besides, Erect-Li has a longer H-H length and shorter
178 distance between Li and H2 molecule. According to the
179 charge analysis, Li atom in Erect-Li structure possesses a
180 larger positive charge. Therefore, the Li atom’s 2s orbital is
181 emptier and provide more room for H2 molecule’s electron.
182 To further probe the interaction nature between deco-
183 rated Li atom and H2 molecule, PDOS of Li 2s orbital and
184 two H atoms’ 1s orbital were shown in Fig. 3. Li atom’s 2s
185 orbital has a slight overlap with r bond of H2 molecule at
186 9 eV lower than Fermi Energy. This proves that Li atom’s
187 empty 2s orbital exchanges electrons with r bond of H2 mol-
188 ecule. Here, the 1st and 2nd hydrogen all belong to the first
189 adsorbing H2 molecule, and these two distances between
190 hydrogen and Li atom are almost equal with each other after
191 the structure relaxation. So, the interactions of two H atoms
192 with Li atom and corresponding PDOS are very similar. Fur-
193 thermore, the overlap peak in Figs. 3(a) and 3(b) was com-
194 pared. We found that the overlap peak is higher in Erect-Li
195 structure. It is indicated that the interaction between Li and
196 H2 molecule is much stronger in Erect-Li system. Thus, it
197 explains for the higher EHb in Erect-Li system.

198Next, more H2 molecules were added one by one to
199these two Li-OPG structures to determine their hydrogen
200absorption abilities, as displayed in Fig. 3. The calculated
201EHb of the 1st to 6th H2 molecules were listed in Table II.
202From the 1st to the 5th H2 molecule, EHb of Flat-Li system
203decreases slowly from 0.32 eV to 0.22. The moderate inter-
204action of Li atom and H2 molecule is similar with the cal-
205cium case with H2 binding energy around 0.2 eV (GGA
206value).20 While in Erect-Li system, EHb of the first two H2

207molecules are above 0.5 eV but drops significantly to the
208same magnitude as that of Flat-Li system from the third H2

209molecule. At the same time, the distance from Li to H2

210increases as EHb decreases. Interestingly, EHb of the 6th H2

211molecule in these two systems falls down simultaneously to
212around 0.05 eV, which is much lower than 0.2 eV. Thus, one
213Li atom in these two Li-OPG structures could adsorb a maxi-
214mum number of five H2 molecules.
215We also compared our results to that of other carbon
216nanostructure based hydrogen storage materials. As Sun
217et al.37 reported, the total interaction energy of 60 H2 mole-
218cules with Li12C60 is 4.5 eV, which means the average bind-
219ing energy of 0.075 eV/H2 molecule (GGA). In the case of
220Li doped graphene, reported by Ataca et al.,31 four H2 mole-
221cule could be absorbed by Li atom effectively, and the bind-
222ing energies of the four H2 are 0.05 eV, 0.41 eV, 0.18 eV,
223and 0.19 eV (LDA), respectively. Relatively, Li-OPG has a
224higher hydrogen binding energy. What is more, we also cal-
225culated the average EHb of Li doped porous graphene. It
226turned out to be 0.29 eV, which is comparable to that of Li-
227FOPG. Since Li-FOPG has a higher EMb, it is apparently
228more advisable.

229C. Hydrogen storage capacity of Li-OPG

230So far, the calculations lead to the conclusion that one
231Li atom could adsorb five H2 molecules. And next, we dem-
232onstrated that two Li-O groups could exist stably in one car-
233bon pore. Three configurations of Flat-Li and six
234configurations of Erect-Li with two oxygen atoms in the
235same missing ring are considered as shown in Fig. 4. The
236total energies of these structures depend on the oxygen atom
237places and Li adsorption sites, and the relative values DE are
238also listed. The three configurations of Flat-Li with lower
239relative energies about 1.5–2.5 eV are chosen to calculated
240the hydrogen storage capacity. In these structures shown in
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FIG. 2. (a) PDOS of one H2 molecule adsorbed Flat-Li system; (b) PDOS of

one H2 molecule adsorbed Erect-Li system.

TABLE II. The H2 binding energies EHb and the distances between H2 and

Li dH-Li of the 1st to 6th H2 molecule on two Li-FOPG structures.

EHb/eV dH-Li/Å

NH2
Flat-Li Erect-Li Flat-Li Erect-Li

1 0.32 0.59 2.02 1.97

2 0.30 0.54 2.02 2.03

3 0.30 0.32 2.38 2.15

4 0.27 0.27 2.23 2.20

5 0.22 0.21 3.13 2.13

6 0.06 0.05 3.53 2.56 FIG. 3. (a) Side view of Flat-Li structure adsorbing five H2 molecules; (b)

side view of Erect-Li structure adsorbing five H2 molecules.
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241 Fig. 4, Li atoms remain separate instead of clustering.
242 Because Li atoms are positively charged by O atom, they
243 tend to repel each other due to the charge repulsion.
244 Since the two Li atoms are adsorbed on different sides
245 of OPG at each configuration, the interactions between these
246 Li atoms are small. The sufficient space of missed carbon
247 ring ensures the five H2 molecules adsorbing near each Li
248 atom like the single Li atom case, as shown in Fig. 5. The av-
249 erage binding energies of H2 molecules are 0.25–0.32 eV.
250 We also calculated the binding energies (0.15–0.20 eV) of
251 fifth H2 molecules at these situations, and found appropriate
252 adsorptions could be expected for these 5th H2 molecules. It
253 should be noted that the hydrogen storage densities of these
254 Li-OPG structures all reach 9.43 wt. %. It is much higher
255 than the criteria (6 wt. %) set for on board application.

256 IV. CONCLUSIONS

257 By performing first principles calculations, we have
258 demonstrated that lithium-decorated oxidized porous gra-
259 phene is a promising hydrogen storage material. It is remark-

260able that Li-OPG possess a Li binding energy above 3 eV.
261This large metal binding energy is very important in avoid-
262ing metal clustering. One Li atom in Li-OPG could adsorb
263five H2 molecules. The adsorption of H2 on Li atom origi-
264nates from slight charge exchange between 2s orbital of Li
265atom and r bond of H2 molecule. Finally, it was shown that
266Li-OPG structure with two Li-O groups in one carbon pore
267could reach storage capacity of 9.43 wt. %.
268It should be noted that the high ideal value about 9.43%
269profits from the combined contributions of light mass of Li
270atom and sparse structure of OPG with sufficient space for H2

271adsorption. The hydrogen storage capacity strongly depends
272on density of missing rings and Li atoms in Li-OPG model
273almost proportionally. Theoretically, a perfect repeated oxy-
274gen atom replacing will induce a regular Li adsorption at each
275missing rings, and a maximal hydrogen storage capacity was
276given. Of course, this theoretical limit will be hard to reach,
277especially considering many uncertain factors though the ex-
278perimental preparation. As porous graphene has been success-
279fully synthesized, there is hope to obtain Li-OPG and apply it
280into hydrogen storage in the future.
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